过正方体中有公共顶点的三条棱的中点切出一个四面体,形成如下图所示的几何体。现在从该几何体的任意面剖开,下列哪项不可能是该几何体的截面?

作者: tihaiku 人气: - 评论: 0
问题 过正方体中有公共顶点的三条棱的中点切出一个四面体,形成如下图所示的几何体。现在从该几何体的任意面剖开,下列哪项不可能是该几何体的截面?
选项
答案 A
解析 A项,沿上下面的对角线所在平面剖开,所得截面的最上面的边的长度应是最下面的边的长度的四分之三,而不是一半,故A项无法截出;B项,沿平行于后面且靠近后面的平面剖开,可得B项中的截面;C项,沿平行于前面且靠近前面的平面剖开,可得C项中的截面;D项,沿上面、前面、右面的对角线构成的平面剖开,可得D项中的截面。故本题答案为A。

相关内容:正方体,顶点,中点,切出,四面体,下图,几何体,截面

猜你喜欢

更多 网友评论0 条评论)
暂无评论

Copyright © 2012-2014 知识的智慧 Inc. 保留所有权利。 Powered by cengyan.com

页面耗时0.0207秒, 内存占用1.05 MB, Cache:redis,访问数据库15次

鲁ICP备17016787号-14